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Abstract

We investigate the Drell-Yan transverse momentum distribution in

the framework of the color dipole approach. Special attention is paid to

parton saturation effects at high energies. Predictions at LHC energies

(
√

s = 14 TeV) are given and extrapolated down to ISR energies (
√

s =

62 GeV). Unitarity corrections are implemented through the multiple

scattering Glauber-Mueller approach and are compared with predictions

of the BGBK saturation model.

1 Introduction

The high energies available in hadronic collisions at RHIC and to be reached at
LHC will provide new information on parton saturation and nuclear phenom-
ena. In these kinematical domains, massive lepton pairs production in hadronic
collisions (Drell-Yan process [1]) can be used as a clean signal to investigate
the high parton density regime.

In the color dipole approach, the Drell-Yan (DY) process is viewed in the
rest frame of the target, where it looks like bremsstrahlung of a virtual photon
decaying into a lepton pair [2], rather than parton annihilation. The DY cross
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section can then be expressed in terms of the dipole cross section extracted from
small-x Deep Inelastic Scattering (DIS). Although the mechanism of dilepton
production appears to be quite different in the dipole formulation from what
one is used to in the parton model, at low x, the equivalence between both
approaches has been demonstrated numerically [3] and analytically [4]. The
advantage of the dipole formulation is that it allows for an easy implementation
of saturation effects, which avoid the divergence of the DY cross section at low
transverse momentum (pT → 0). (in contrast to the result in the infinite
momentum frame)

In the following we report the main results on Ref. [4], where we investigated
the DY dilepton transverse momentum distribution with regards to unitarity
(parton saturation) aspects, which play an important role at high energies.
These effects are included into the dipole cross section through the multiple
scattering Glauber-Mueller approach [5]. Results are compared to predictions
from the QCD improved saturation model of Ref. [6].

2 The Drell-Yan cross section in the color di-

pole approach

In terms of color dipole degrees of freedom, the differential cross section for
radiation of a virtual photon with mass M from a quark (or an antiquark)
scattering on a proton reads [7],

dσ(qp → γ∗X)
d ln α d2pT

=
1

(2π)2

∫
d2r⊥1d

2r⊥2 ei�pT ·(�r⊥1−�r⊥2)Ψ∗T,L
γ∗q (α,�r⊥1)Ψ

T,L
γ∗q(α,�r⊥2)

× 1
2

{
σdip(x2, αr⊥1) + σdip(x2, αr⊥2) − σdip(x2, α(�r⊥1 − �r⊥2))

}
, (1)

where α is the light-cone momentum fraction that the γ∗ takes from its parent
quark and r⊥i is related to the γ∗-quark transverse separation [7]. Explicit
expressions for the light-cone wavefunctions ΨT,L

γ∗q can be found e.g. in Ref. [3].
The measured cross section is obtained by embedding Eq. (1) in the hadronic
environment, observing that the projectile quark carries momentum fraction
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x = x1/α of the parent hadron. Correspondingly, x1 is the momentum fraction
of the proton carried by the photon. 2

The cross section for a small color dipole scattering off a nucleon can be
obtained from perturbative QCD. However, there is a large uncertainty coming
from non-perturbative aspects (infrared region) of the scattering and higher
orders associated with a perturbative expansion (higher twists). A close con-
nection with the DGLAP parton densities can be obtained in the double log-
arithmic approximation. In that limit, the dipole cross section can be written
as,

σdip(x, r⊥) =
π2 αs

3
r2
⊥ xGDGLAP(x, Q̃2) , (2)

where xGDGLAP(x, Q̃2) is the usual DGLAP gluon distribution at momentum
fraction x and virtuality scale Q̃2 = 4/r2

⊥ [8]. Concerning the non-perturbative
contribution, our procedure is to freeze the dipole cross section in a suitable
scale larger than r2

cut, which corresponds to the initial scale on the gluon density
perturbative evolution Q2

0 = 4/r2
cut. At high energies, an additional require-

ment should be obeyed. The growth of the partons density (mostly gluons)
has to be tamed, since an uncontrolled increasing would violate the Froissart-
Martin bound. Then, the black disc limit of the target has to be reached at
quite small Bjorken x. We implement this requirement by using the multi-
ple scattering Glauber-Mueller approach, which slows down the growth of the
gluon distribution in an eikonal way in the impact parameter space [5]. There-
fore, we substitute xGDGLAP in Eq. (2) by the corrected distribution that also
includes unitarity effects (see Ref. [8] for further details).

The color dipole picture is only valid at small x2, and it takes into account
only sea quarks produced from gluon splitting in the target, neglecting its va-
lence content. (However, both valence and sea quarks distributions are parame-
terized in the projectile structure function.) At lower energies, x2 increases and
non-gluonic (valence) contributions to the process are not negligible. In order
to extend the dipole approach down to lower energies, we make use the follow-
ing educated guess. The dipole cross section, Eq. (2), represents the asymptotic
gluonic (Pomeron) contribution to the process. At larger x, however, a non-
asymptotic quark-like content should also be included. In Regge language, this

2We use standard kinematical variables, x1 − x2 = xF and x1x2 = (M2 + q2
T )/s.
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contribution corresponds to a Reggeon instead of a Pomeron exchange in the
t-channel [8]. Hence, we add a Reggeon contribution to the dipole cross sec-
tion, Eq. (2), which is parametrized in a simple way, σIR

dip = σ0 r2
⊥ x qval (x, Q̃2) .

With a value of σ0 = 7, we obtain a reasonable description of the DY mass
distribution measured by E772. Similar results were obtained in Ref. [8]. The
quantity qval is the valence quark distribution from the target, evolved through
DGLAP.

A quite successful phenomenological realization of the parton saturation
phenomenon is rendered by the QCD improved saturation model of Ref. [6].
This model reproduces the DGLAP evolution for small dipoles and the black
disk limit down to small virtualities (large dipoles) in the eikonal form,

σdip(x, r⊥) = σ0

{
1 − exp

(
−π2r2

⊥αs(µ2)xg(x, µ2)
3σ0

)}
. (3)

Here, g(x, µ2) is the gluon density of the target, DGLAP evolved to the scale
µ2, which is assumed to have the form µ2 = C

r2
⊥

+ µ2
0. All free parameters have

been taken from the Ref. [6]. In the following we compare the saturation model
with the results coming from the Glauber-Mueller approach.

3 Results and Conclusions

We calculate the DY pT distribution in proton-proton (pp) collisions at LHC
energy (

√
s = 14 TeV). In addition, we evaluate the xF -integrated cross section

at ISR energy (
√

s = 62 GeV) and compare it with available DY data (from
pp scattering) in the mass interval 5 ≤ M ≤ 8 GeV [9]. Our results are
shown in Fig. 1. The solid line in the Fig. 1:(a) denotes the result using the
GM distribution, whereas the dashed line was obtained with the GRV94 gluon
parametrization, i.e. without saturation. The dot-dashed line labels the result
using GRV98. The aim of this comparison is to find out to what extent an
updated parametrization could absorb unitarity effects in the fitting procedure.
We conclude that at LHC energy, those effects could not be absorbed in a new
parametrization. As an additional comparison, we present curves from the
improved saturation model BGBK [6] (dotted lines). In Fig. 1:(b) the solid
curve denotes the Glauber-Mueller calculation, including the non-asymptotic
valence content (GM + Reggeon) and the dot-dashed line represents the BGBK
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calculations. Both results are in reasonable agreement with shape and overall
normalization of the data. In order to discriminate among saturation models,
one needs measurements at high energy accelerators such as RHIC and/or LHC,
preferably in the large rapidity region.
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Figure 1: The Drell-Yan pT distribution at (a) LHC energies (b) and
CERNR209 energies

√
s = 62 GeV.
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